
Efficient Dynamic Compressor Optimization
in Natural Gas Transmission Systems

Terrence W. K. Mak, Pascal Van Hentenryck, Anatoly Zlotnik, Hassan Hijazi, and Russell Bent

Abstract— The growing reliance of electric power systems
on gas-fired generation to balance intermittent sources of
renewable energy has increased the variation and volume of
flows through natural gas transmission pipelines. Adapting
pipeline operations to maintain efficiency and security under
these new conditions requires optimization methods that ac-
count for transients and that can quickly compute solutions
in reaction to generator re-dispatch. This paper presents an
efficient scheme to minimize compression costs under dynamic
conditions where deliveries to customers are described by
time-dependent mass flow. The optimization scheme relies on
a compact representation of gas flow physics, a trapezoidal
discretization in time and space, and a two-stage approach to
minimize energy costs and maximize smoothness. The resulting
large-scale nonlinear programs are solved using a modern
interior-point method. The proposed optimization scheme is
validated against an integration of dynamic equations with
adaptive time-stepping, as well as a recently proposed state-
of-the-art optimal control method. The comparison shows that
the solutions are feasible for the continuous problem and
also practical from an operational standpoint. The results
also indicate that our scheme scales to large gas transmission
networks with more than 6000 kilometers of total pipeline.

I. INTRODUCTION

In the last two decades, the increasing integration of
renewable sources of energy in the electrical power system,
together with the recent availability of natural gas in the
United States, acted as a primary driver of installation of
gas-fired electric power plants to meet most of the demand
for new generating capacity [1]. Gas-fired generators may go
online and shut down several times a day, and can rapidly
modify their outputs, making them attractive generation
resources to balance the fluctuations of renewable energy
sources such as wind and solar [2], [3].

Historically, withdrawals from natural gas transmission
systems came from utilities and industrial consumers, which
are highly predictable and exhibit low variation in demand
[4]. These withdrawals are traded using day-ahead contracts
for fixed deliveries and implicilty assume that injections
and withdrawals remain nearly constant. As a result, natural
gas transmission systems could be largely controlled and
optimized using steady-state modeling [5], [6]. Early studies
[7], [8], [5] focused on optimizing steady-state gas flows,
for which the state equations are algebraic relations. Recent
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efforts have improved and scaled up optimization techniques
for similar problems [9], [10], [11], [12], [13]. In short-
term operations, the operating set-points for gas compressor
stations can be readily changed, and compressor optimization
for steady-state flows has been solved in the form of an
optimal gas flow (OGF) [11].

However, it is no longer appropriate to restrict attention
to steady-state approximations, which cannot adequately
describe the physics of high volume gas flows that may fluc-
tuate significantly throughout the day according to gas-fired
generator dispatch and commitment schedules [14], [15].
Recent studies have highlighted the challenges created by
such increasing flow variability and volume [16], which are
predominantly caused by the growing use of gas-fired power
plants for electricity generation [1], [17]. The integration
issues that face the increasingly interdependent electric and
gas systems have created growing concerns in both industry
sectors [3]. As a result, in order to enable natural gas systems
to inter-operate with electric power systems on the time-scale
of generator dispatch, the OGF must be extended to account
for transient flow conditions. Therefore, new optimization
techniques that use dynamic models of gas flows on pipeline
networks are required [18].

An automatic control methodology for optimally manag-
ing transient flows in gas transmission systems will require
a stable, accurate, physics-based, and rapid technique for
computing model-based compressor control protocols. Au-
tomatic grid control tools are already industry standards for
management of generator dispatch for electric power systems
[19]. Such power system optimization models consider one
or a sequence of steady states [20]1, but the significant
qualitative difference in the physics of gas pipeline networks
prevents these techniques from being directly transferred.
Indeed, the dynamics in the electricity and gas networks
operate at fundamentally different space and time scales.

Gas pipeline flow dynamics on the relevant spatial and
temporal scales do not experience waves or shocks, and
can be represented by the Euler equations for compressible
gas flow in one-dimension with significant simplifications
[23], [24]. These partial differential equations (PDEs) are
highly nonlinear, however, and are challenging to simulate
[25], particularly when instances over many domains are
coupled at the boundaries over a network. This nonlinear-
ity and complexity of gas pipeline network dynamics is
also an obstacle to tractable optimization of such flows

1Recently, efficient optimization methods for transient repair and restora-
tion of power systems [21], [22] have been facilitated by discretizations
characterized by sparse constraints and appropriate nonlinear relaxations.



under transient conditions. Several studies have proposed
optimization schemes for gas networks on the time-scale
of daily operations. These approaches used high fidelity
simulation that made gradient information costly to obtain
[26], or relied on specialized structures [27], [28]. Recent
studies investigated stochastic optimization as well [29]. A
recent method relied on a lumped-element method for spatial
discretization and a pseudospectral collocation scheme in
time [30]. In all these studies, the issues of computation time
and scalability have been noted repeatedly.

In this manuscript, we consider the Dynamic Optimal Gas
Flow (DOGF) problem, which generalizes the OGF to cap-
ture the dynamics of a gas pipeline network. The objective
of the DOGF is to minimize the cost of gas compression
required for pipeline operations subject to system pressure
constraints, and whose deliveries to customers are described
by time-dependent mass flow. Our main contribution is
an efficient optimization scheme for the DOGF, which is
validated by an accurate simulation method for gas pipeline
networks with dynamic flows and compressors.

The key aspects of our optimization scheme can be
summarized as follows. First, following [30], the hydro-
dynamic relations that describe gas flow are discretized
in time and space using first order approximations, and
several relaxations of the resulting nonlinear constraints are
employed. Second, in contrast to earlier work that was based
on pseudospectral discretization, our proposed scheme uses
a trapezoidal discretization but compensates for the potential
loss in accuracy by a two-stage optimization approach. In
the first stage, our scheme optimizes the compression cost
(the original objective). In order to obtain a physically
realistic solution, the second stage optimizes the smoothness
of the compressor ratios while ensuring that the overall
compression costs remain close to the value found in the
first stage. The resulting large-scale nonlinear optimization
problems (with up to more than 130,000 decision variables)
are solved using the state-of-the-art IPOPT system [31],
enabling us to exploit the significant progress in nonlinear
optimization in the last decades.

The solutions produced by our optimization scheme are
verified in two ways:

1) By comparing them to a validated dynamic simula-
tion method for gas pipeline networks with transient
compression [32], [33], which is seeded with the
compressor ratios of our optimized solutions; and

2) By comparing them to the state-of-the-art method for
the DOGF.

The validation process indicates that our optimization
scheme produces solutions with no pressure violations and
with physically meaningful mass flow and pressure trajecto-
ries in the corresponding simulation. Moreover, the compres-
sor ratios in our solutions only have negligible differences
compared to the state-of-the-art method. The main benefit
of our optimization scheme, however, is its computational
efficiency: Compared to earlier approaches, it reduces so-
lution times up to an order of magnitude. In particular, it
solves a previously investigated 24-pipe gas network case

study in less than 30 seconds and demonstrates scalability
on networks with 24, 40 and 135 pipes, with total pipeline
lengths of 477, 1118, and 6964 kilometers, respectively.

The rest of the paper is organized as follows. Section
II summarizes the physical modeling of gas pipeline net-
works and poses the DOGF. Section III describes the dis-
cretization scheme and relaxations required for an efficient
optimization formulation. Section IV presents our two-stage
optimization approach and implementation details, followed
by computational results for the three case studies, including
convergence experiments and validating simulations. Section
V concludes with a discussion and future extensions.

II. COMPRESSOR OPTIMIZATION IN GAS PIPELINES

A gas pipeline network can be represented as a directed
graph G = (J ,P), where edges {i, j} ∈ P represent pipes
Pij that connect nodes i, j ∈ J that represent joints Ji and
Jj . The dynamic state on the pipe Pij is given by pressure
pij and mass flow qij , which evolve on a time interval [0, T ]
and the distance variable xij ∈ [0, Lij ], where Lij is the
length of pipe Pij . We are interested in the subsonic and
isothermal regime of transients that do not excite shocks or
waves, i.e., where the flow velocity through a pipe is less
than the speed of sound a in the gas, and temperature is
assumed to be constant. The flow dynamics on a single pipe
Pij can be adequately described in this regime [24] by

∂pij
∂t

+
a2

Aij

∂qij
∂x

= 0 (1)

2pij
∂pij
∂x

+
λa2

DijA2
ij

qij |qij | = 0 (2)

The parameters for each pipe Pij are the pipe diameter
Dij and cross-sectional area Aij , and the speed of sound
a and friction factor λ are assumed uniform and constant
throughout the system. The second term in (2) approximates
friction effects. The gas dynamics on a pipeline segment
are represented using (1)-(2) and possess a unique solution
when any two of the boundary conditions pij(t, 0), qij(t, 0),
pij(t, Lij), or qij(t, Lij) are specified. For both computa-
tional and notational purposes, we apply a transformation to
dimensionless variables [24] given by

p̃ij =
pij
pN

, q̃ij =
qij
qN

, (3)

x̃ij = x
λa2q2N

DijA2
ijp

2
N

, t̃ij = t
λa4q3N

DijA3
ijp

3
N

,

where pN and qN are scaling constants. This results in the
dimensionless equations

∂pij
∂tij

+
∂qij
∂xij

= 0, (4)

2pij
∂pij
∂xij

+ qij |qij | = 0, (5)

where we omit the ∼ label over the variables for readability.
Note that the space and time variables xij and tij are now
pipe-dependent. We write these variables as x and t when it
is clear from the context that they correspond to a specific



pipe Pij . Design limits and regulations for pipeline systems
require pressure to remain within specified bounds given by

p
ij
≤ pij(t, x) ≤ pij . (6)

The momentum dissipation due to the friction term in
(2) causes the gas pressure to decrease, hence it must
be augmented by compressors to maintain the minimum
required pressure. We define C ⊂ P as the subset of pipes
that have compressors. The action of compressors is modeled
as conservation of flow and an increase in pressure at a point
cij ∈ [0, Lij ] by a multiplicative ratio Rij(t) > 0 that may
depend on time. Specifically,

lim
x↘cij

pij(t, x) = Rij(t) lim
x↗cij

pij(t, x), (7)

lim
x↘cij

qij(t, x) = lim
x↗cij

qij(t, x). (8)

The cost of compression Sij is proportional to the required
power [11], and is approximated by

Sij(t) = η−1|qij(t, cij)|(max{Rij(t), 1}2K − 1) (9)

with 0 < K = (γ − 1)/γ < 1, where γ is the heat capacity
ratio and η is a compressor efficiency factor. In this study we
do not consider pressure regulation (decompression), so the
compressor ratio for a given station must remain bounded
within a feasible operating region

max{Rij , 1} ≤ Rij ≤ Rij . (10)

In addition to the dynamic equations (4)-(5) and continu-
ity conditions for compressors (7)-(8) that characterize the
system behavior on each pipe Pij ∈ P , we specify balance
conditions for each joint Ji ∈ J . We first define variables for
the unique nodal pressure pi(t) at each junction, as well as
mass flow injections di(t) from outside the system (negative
for consumptions/withdrawals). Each joint Jj ∈ J then has
a flow balance condition∑

Ji∈J :Pij∈P
qij(t, Lij)−

∑
Jk∈J :Pjk∈P

qjk(t, 0) = fj(t), (11)

as well as a pressure continuity condition

pij(t, L) = pj(t) = pjk(t, 0), (12)
∀ Ji, Jk ∈ J s.t. Pij , Pjk ∈ P.

A subset of the junctions S ⊂ J may be treated as “slack”
nodes, which reasonably represent large sources of gas to
a transmission system. For these junctions, the mass inflow
fi(t) is a free variable and the nodal pressure is a parameter

pi(t) = si(t). (13)

For the remaining junctions, which reasonably represent
consumers or small suppliers of gas to the system, the nodal
pressure pi(t) free and the mass inflow is a parameter

fi(t) = di(t). (14)

The optimization problem that we aim to solve involves a
gas pipeline network for which the conditions at each joint
are parameterized by an injection/withdrawal di(t) or supply

pressure si(t). The design goal is for the system to deliver all
of the required flows di(t) while maintaining feasible system
pressure given the physics-based dynamic constraints, and
the objective is to minimize the cost of compression over a
time interval [0, T ]. This cost objective is given by

C =
∑

Pij∈C

∫ T

0

Sij(t)dt. (15)

In this study we consider time-periodic boundary conditions
on the system state and controls, i.e.,

pij(0, x) = pij(T, x), qij(0, x) = qij(T, x), ∀Pij ∈ P (16)
Rij(0) = Rij(T ), ∀Pij ∈ C (17)

and therefore feasible parameter functions also must satisfy
di(0) = di(T ) and si(0) = si(T ). The formulation is

min C in (15)
s.t. pipe dynamics: (4), (5)

compressor continuity: (7), (8)
joint conditions: (11), (12)
density & compression constraints: (6), (10)
periodicity constraints: (16), (17)
injection parameters: (13), (14)
compressor power: (9)

(18)

In the next section, we describe a spatial and temporal
discretization scheme and relaxation conditions that facili-
tate efficient solution of this PDE-constrained optimization
problem using standard nonlinear programming tools.

III. DISCRETIZATION TO A NONLINEAR PROGRAM

We create a discretization scheme to balance the high
nonlinearity in the spatiotemporal dynamics (4)-(5) among
a collection of auxiliary variables in which the constraints in
Problem (18) possess a sparse representation.

For each pipe Pij ∈ P −C, we create a set of M + 1 time
points tijm and Nij + 1 space points xijn defined by

tijm = m∆t
ij , m = 0, 1, . . . ,M, (19)

xijn = n∆x
ij , m = 0, 1, . . . , Nij , (20)

∆t
ij =

Tij
M

, ∆x
ij =

Lij

Nij
. (21)

Here ∆t
ij and ∆x

ij are (dimensionless) time and space dis-
cretization steps, and Tij is the dimensionless time horizon
for pipe Pij obtained from T according to (3). We omit
the subscripts {ij} on Nij when they are clear from the
context. For each of (M + 1) × (Nij + 1) discrete points
in {(tm, xn) : 0 ≤ m ≤ M, 0 ≤ n ≤ Nij} within
the (dimensionless) domain [0, Tij ] × [0, Lij ] for the flow
dynamics on a pipe Pij , we define

pmn
ij ≈ pij(tm, xn), qmn

ij ≈ qij(tm, xn) (22)

to be the pressure and mass flow variables at time t = tm
and location x = xn. We also define temporal and spatial



derivative variables at time t = tm and location x = xn by

ptmn
ij ≈

∂pij
∂t

(tm, xn), pxmn
ij ≈

∂pij
∂x

(tm, xn), (23)

qxmn
ij ≈

∂qij
∂x

(tm, xn). (24)

A constraint that relates the discrete variables (22) to their
derivatives (23)-(24) is created by approximating the integral
over a time or space step by the trapezoid rule. This yields

∀Pij ∈ P − C, 0 ≤ m ≤M − 1, 0 ≤ n ≤ N :

pm+1,n
ij − pmn

ij ≈
∆t

ij

2
(ptm+1,n

ij + ptmn
ij ) (25)

∀Pij ∈ P − C, 0 ≤ m ≤M, 0 ≤ n ≤ N − 1 :

pm,n+1
ij − pmn

ij ≈
∆x

ij

2
(pxm,n+1

ij + pxmn
ij ) (26)

qm,n+1
ij − qmn

ij ≈
∆x

ij

2
(qxm,n+1

ij + qxmn
ij ) (27)

The nondimensional dynamic equations (4)-(5) are then
discretized in the above variables according to

∀Pij ∈ P − C, 0 ≤ m ≤M,0 ≤ n ≤ N :

ptmn
ij + qxmn

ij = 0 (28)

2pmn
ij pxmn

ij + qmn
ij |qmn

ij | = 0 (29)

For each pipe Pij ∈ C, we define the discrete compression
variables Rm

ij for m = 0, 1, . . . ,M , and suppose that the
compressor is located at cij = xk for some 0 ≤ k ≤ N ,
where the dependence of k on the pipe Pij in question is
clear from the context. The pipe is then divided into two
pipes Piju and Pijl, with non-dimensional lengths Liju and
Lijl, and for which we we define discrete variables

pmn
iju ≈ pij(tm, xn), qmn

iju ≈ qij(tm, xn), 0 ≤ n ≤ k (30)

pmn
ijl ≈ pij(tm, xn), qmn

ijl ≈ qij(tm, xn), k ≤ n ≤ N (31)

and corresponding spatial derivative variables ptmn
iju , pxmn

iju ,
and qxmn

iju for 0 ≤ n ≤ k and ptmn
ijl , pxmn

ijl , and qxmn
ijl for

k ≤ n ≤ N . These state and derivative variables satisfy

pm+1,n
iju − pmn

iju ≈
∆t

ij

2
(ptm+1,n

iju + ptmn
iju ), 0 ≤ n ≤ k, (32)

pm+1,n
ijl − pmn

ijl ≈
∆t

ij

2
(ptm+1,n

ijl + ptmn
ijl ), k ≤ n ≤ N (33)

for Pij ∈ C and 0 ≤ m ≤M − 1, and

pm,n+1
iju − pmn

iju ≈
∆x

ij

2
(pxm,n+1

iju + pxmn
iju ), 0 ≤ n < k, (34)

pm,n+1
ijl − pmn

ijl ≈
∆x

ij

2
(pxm,n+1

ijl + pxmn
ijl ), k ≤ n ≤ N, (35)

qm,n+1
iju − qmn

iju ≈
∆x

ij

2
(qxm,n+1

iju + qxmn
iju ), 0 ≤ n < k, (36)

qm,n+1
ijl − qmn

ijl ≈
∆x

ij

2
(qxm,n+1

ijl + qxmn
ijl ), k ≤ n ≤ N (37)

for Pij ∈ C and 0 ≤ m ≤ M . In addition, we require
continuity constraints at the compressor location to connect

pipes Piju and Pijl, which take the form

Rm
ij =

pmk
ijl

pmk
iju

, qmk
ijl = qmk

iju , (38)

for all Pij ∈ C and 0 ≤ m ≤ M . The equations (4)-(5) on
either side of the compressor are discretized for Pij ∈ C by

ptmn
iju + qxmn

iju = 0, 0 ≤ n ≤ k, (39)

2pmn
ijupx

mn
iju + qmn

iju |qmn
iju | = 0, 0 ≤ n ≤ k, (40)

ptmn
ijl + qxmn

ijl = 0, k ≤ n ≤ N (41)

2pmn
ijl px

mn
ijl + qmn

ijl |qmn
ijl | = 0, k ≤ n ≤ N (42)

for all Pij ∈ C and 0 ≤ m ≤ M . The equations (25)-(29)
and (32)-(42) discretize the dynamic equations (4)-(5) and
continuity conditions for compressors (7)-(8). The pressure
variables must also satisfy for all 0 ≤ m ≤M the constraints

p
ij
≤ pnmij ≤ pij , Pij ∈ P − C, 0 ≤ n ≤ N, (43)

p
ij
≤ pnmiju ≤ pij , Pij ∈ C, 0 ≤ n ≤ k, (44)

p
ij
≤ pnmijl ≤ pij , Pij ∈ C, k ≤ n ≤ N (45)

which discretize (6). In addition, the compression ratio must
satisfy

max{Rij , 1} ≤ Rm
ij ≤ Rij . (46)

for Pij ∈ C and 0 ≤ m ≤ M . The cost of compression is
then expressed by a constraint

Sm
ij = η−1qmm

ij ((Rm
ij )2K − 1) (47)

for Pij ∈ C and 0 ≤ m ≤ M , where qmm
ij is an auxiliary

variable with the constraints

qmm
ij ≥ qmk

iju , qmm
ij ≥ −qmk

iju , (48)

so that qmm
ij = |qmk

iju | when Rm
ij > 1. Compressor cost is

also constrained to be positive, i.e.,

Sm
ij ≥ 0. (49)

The balance conditions at joints are given in the discrete
variables for all 0 ≤ m ≤M and Jj ∈ J by∑

Ji∈J :Pij∈P
qmN
ij −

∑
Jk∈J :Pjk∈P

qm0
jk (50)

+
∑

Ji∈J :Pij∈P
qmN
ijl −

∑
Jk∈J :Pjk∈P

qm0
jku = fmj ,

and

pmN
ij = pmj = pm0

jk , ∀ Ji, Jk ∈ J s.t. Pij , Pjk ∈ P. (51)

Parametrization of these balance conditions for 0 ≤ m ≤M
is given by

fmi = di(tm), Ji ∈ J − S, (52)
pmi = si(tm), Ji ∈ S, (53)



where di(t) and si(t) are given flow injection or supply
pressure functions. The time-periodic boundary conditions
on the states and controls are given for 0 ≤ m ≤M by

p0nij = pMn
ij , ∀Pij ∈ P − C, 0 ≤ n ≤ N (54)

p0niju = pMn
iju ∀Pij ∈ C, 0 ≤ n ≤ k (55)

p0nijl = pMn
ijl ∀Pij ∈ C, k ≤ n ≤ N (56)

R0
ij = RM

ij ∀Pij ∈ C. (57)

The integral in the objective of problem (18) is approximated
by a Riemann sum (normalized by T ) of the form

C1 ≈
∑

Pij∈C

M∑
m=0

1

M + 1
Sm
ij . (58)

Finally, we add to the objective a penalty on total squared
variation of compressor ratio values, in order to guarantee a
physically realistic solution of the nonlinear program. This
penalty takes the form

C2 ≈
∑

Pij∈C

M−1∑
m=0

1

M
(Rm

ij −Rm+1
ij )2. (59)

The nonlinear program is then given by

min C1 + µC2 using (58), (59)
s.t. pipe dynamics: (25)− (29) & (32)− (42)

joint conditions: (50), (51)
density & compression constraints: (43)− (46)
periodicity constraints: (54)− (57)
injection parameters: (52), (53)
compressor power: (47)− (49)

(60)

where µ is an appropriate scaling factor. The software
implementation of this nonlinear programming approach is
described in the next section, followed by descriptions of
computational experiments involving several examples with
comparisons to the results of other studies.

IV. IMPLEMENTATION AND EXAMPLES

Instead of solving the above nonlinear program directly,
the implementation employs a lexicographic strategy. It first
solves the nonlinear program with the original objective (58).
It then solves the nonlinear program with the smoothness
objective (59), while imposing the additional constraint

C1 ≤ (1 + r)f, where 0 ≤ r ≤ 1 (61)

where f is the optimal objective value of the first step.
Intuitively, the tolerance r is a user-adjustable parameter that
quantifies the percentage of compression energy that can be
traded for a smoother solution. Note also that the second
optimization stage is initialized using the first-stage solution.

This large-scale nonlinear problem is modeled with AMPL
(version 2014) [34], [35] and solved with the nonlinear
solver IPOPT 3.12.2, ASL routine (version 2015) [31]. The
implementation is run on a Dell PowerEdge R415 with AMD
Opteron 4226 and 64 GB ram.

We present the computational results of three case studies
that include a validation of the proposed approach, as well as
results about its solution quality, efficiency, and scalability.

Fig. 1. 24-pipe gas system test network used in the benchmark case study.
Numbers indicate nodes (blue), edges (black), and compressors (red). Thick
and thin lines indicate 36 and 25 inch pipes. Nodes are source (red), transit
(blue), and consumers (green).

a) Validation: The solution obtained using our im-
plementation was validated on the 24-pipe benchmark gas
network used in prior work [30], and illustrated in Figure
1. The pressures at supply sources were fixed at 500psi,
the scalings for non-dimensionalization were set to pN =
250psi and qN = 100 kg/m2/s, physical parameters a =
377.968 m/s, γ = 2.5, and λ = 0.01 were used, and a
time horizon T = 86400 seconds (24 hours) was considered.
Parameters Dij , Aij , Lij , Rij , and Rij were set according to
the benchmark case study, as well as time-dependent profiles
of gas injections/withdrawals di(t). The benchmark network
structure and the gas draw profiles are provided online [36].
Each pipe Pij is discretized uniformly according to its length
Lij into dLij/Ee + 1 segments, where E is set to 10km
by default. In order to correspond to the structure of the
benchmark model, the compressors are placed on the first
segment of the ith end of every pipe Pij ∈ C.

The admissible pressure range is 500 to 800 psi throughout
the network. A feasible solution to the discretized problem
that satisfies the pressure constraints may cause these con-
straints to be violated in a high-accuracy simulation of the
dynamics for the continuous problem. To address this issue,
one version of our implementation tightens the pressure
bounds conservatively by 4% or less, i.e. 520 to 780 psi
for the benchmark case. We refer to this as “tightened”, and
optimization using the nominal constraints of 500 to 800 psi
is referred to as “regular”.

The optimization results were validated by using the
optimized compression ratio solution as a time-varying pa-
rameter in a validated dynamic simulation method [32], [33],
and through comparison to a state-of-the-art (benchmark)
solution based on a pseudospectral discretization approach
[30]. The trajectories computed using the simulation are used
to validate the optimization solution in two ways. First, we
quantify how much the constraints on pressure are exceeded
by evaluating the L2 norm of the violation. This aggregates
violations over the 24-hour period by integrating the square
of pressure violation (psi) of the bounds at every junction.
This takes the form

vp =

√ ∑
Pij∈P

V p
ij (62)
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Fig. 2. From top to bottom: Benchmark solution; New method with 25 points in time, tightened constraints, 10km in space, r = 10%; New method with
300 points in time, regular constraints, 10km in space, r = 10%. From left to right: Optimal control solution; Pressure trajectories from simulation using
the controls; Flux trajectories from the same simulation; Difference between pressure solution from optimization and pressure trajectories from simulation.

where

V p
ij =

[∫ T

0

((pij(t, 0)− pmax)+)2dt

] 1
2

+

[∫ T

0

((pmin − pij(t, Lij))+)2dt

] 1
2

(63)

and (x)+ = x if x ≥ 0 and (x)+ ≡ 0 if x < 0. The unit of
the metric is psi-days. Table I lists its values for solutions
obtained using various time discretization M , smoothing
parameter r, and using tightened and regular constraints.
With the tightened bounds, the optimization solution has no,
or very small violations for these configurations. Figure 2
depicts the optimal compressor ratio functions for 25 and
300 point temporal discretization, with tightened and regular
constraints, respectively, and both with E = 10km spatial
discretization and r = 10%. A comparison is made with
the solution to the same network obtained from prior work
[30]. The smoothness of the compressor ratios over time
indicates that the optimization solution is physically realistic
and the control profiles can be implemented by operators.
These results suggest that our optimization method provides
operationally feasible solutions.

Next, we further validate the solutions provided by the
solver by comparing the optimized pressure profiles with
pressure trajectories obtained by applying the optimal con-
trols in a dynamic simulation of the ODE model of the
network [30] using an adaptive time-stepping solver ode15s
in MATLAB. Figure 2 depicts the pressure and flow profiles
resulting from the simulation, and the difference between op-
timization and simulation pressure trajectories is illustrated.
For the 25 point time discretization, the discrepancy is similar
to that for the benchmark solution, and using a 300 point time

TABLE I
AGGREGATED PRESSURE BOUND VIOLATIONS (vp , PSI-DAYS).

Bounds Tightened Regular

Time pt. 5% 10% 5% 10%

TZ 25tp 0.032 0.038 0.983 0.978
TZ 50tp 0.000 0.000 0.159 0.112

TZ 100tp 0.000 0.000 0.033 0.020
TZ 300tp 0.000 0.000 0.002 0.005

benchmark 0.9696

discretization nearly eliminates this difference. Because the
sources of the compared pressure profiles are qualitatively
very different, i.e., optimization of algebraic equations that
discretize PDEs over a fixed grid compared with adaptive
time-stepping solution of an ODE system, this is a powerful
cross-validation of both models.

Finally, Table II presents the aggregated differences (in
relative L2-Norm) between compressor ratios of the pro-
posed method and the state-of-the-art benchmark solution.
Specifically, we compute

vR =

√ ∑
Pij∈C

(V R
ij )2 (64)

where

V R
ij =

∫ T

0
(Rij(t)−R∗ij(t))2dt∫ T

0
(R∗ij(t))

2dt
. (65)

Once again, the results indicate that the proposed method
and the state-of-the-art yield highly similar compressor ratios
across the network.



TABLE II
DISTANCE (vR) OF COMPRESSION RATIOS W.R.T. BENCHMARKS

Bounds Tightened Regular

Time pt. 5% 10% 5% 10%

TZ 25tp 0.002 0.004 0.002 0.004
TZ 50tp 0.002 0.004 0.003 0.004
TZ 100tp 0.002 0.004 0.002 0.003
TZ 300tp 0.003 0.004 0.000 0.001

TABLE III
OBJECTIVE VALUE (C1) AND RUNTIMES ON 24 PIPE NETWORK.

TZ tp Variables Objective Value CPU Time (secs)

1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

25 11,675 2.024 2.126 2.227 10 20 25
40 18,410 2.067 2.170 2.273 21 47 65
50 22,900 2.120 2.226 2.332 23 120 34
60 27,390 2.133 2.239 2.346 47 227 61
80 36,370 2.134 2.240 2.347 109 209 97

100 45,350 2.130 2.237 2.343 158 375 100
300 135,150 2.132 2.238 2.345 1,089 429 378

Benchmark 3937 2.2752 112∗

TABLE IV
OBJECTIVE VALUE (C1) AND RUNTIMES ON 40 PIPE NETWORK.

TZ tp Variables Objective Value CPU Time (secs)

1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

20 20,875 1.238 1.300 1.362 51 19 62
25 25,845 1.274 1.337 1.401 71 51 53
40 40,755 1.257 1.320 1.383 353 256 270

b) Solution Quality and Efficiency: Table III reports the
objective value C1 and computation time of the proposed
method for various time discretizations and smoothness
parameters r. The number of variables in the optimization
problem ranges from 11,675 for the 25pt discretization to
135,150 for the 300pt model. The table gives the value of
the C1 objective after the first stage, and also in the second
stage for r = 5% and 10%. The CPU times in seconds
for the first and second stages are also reported. First, we
observe that enforcing the smoothness of the solution does
not fundamentally decrease the quality of the C1 objective,
which is important from an operational standpoint. Second,
as expected, refining the time discretization increases the
objective value, because more constraints are added. The
convergence rate is fast and the solutions obtained with a
coarse discretization are already of high quality, as illustrated
in Figure 2. Finally, the method is efficient; consider the time
granularities with 25 and 40 points: For r = 10%, the method
takes about 30 and 80 seconds, respectively, which indicates
that it can be used during real-time operations. The last line
describes the objective value and the execution of the state-
of the art (benchmark) solution [30], which was executed
on a different machine, and only given to indicate that our
implementation is comparable to previous work.

TABLE V
OBJECTIVE VALUE (C1) AND RUNTIMES ON 135 PIPE NETWORK.

TZ tp Variables Objective Value CPU Time (secs)

1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 7% r = 5% 7%

10 56,618 4.048 4.250 4.331 3,547 388 194
15 82,353 6.760 7.098 7.233 3,974 722 1,190
20 108,088 7.945 8.342 8.501 13,726 2,599 1,761
25 133,823 7.307 7.672 7.818 22,024 1,987 2,225
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Fig. 3. Compression ratio solutions for gaslib-40 (left) and gaslib-135 (right)
case studies. The trapezoidal scheme is used for time discretization with
20 points, and the smoothness tolerances are r = 10% and r = 7%,
respectively.

c) Scalability: To study how the proposed method
scales to larger network models, two additional instances are
considered: gaslib-40 and gaslib-135 from the GasLib library
[37]. The admissible pressure range is [500, 1000] psi for
both the gaslib-40 and gaslib-135 instances, and the source
pressure is set to 650 and 600 psi respectively. Simplified
network structures and time-dependent gas draw profiles are
provided online [36]. Tables IV and V present the results,
which show that the proposed method scales well to larger
benchmarks and exhibits similar behavior as on the 24-pipe
network. The 40 pipe network is solved in less than two
minutes, and the 135 pipe network in around an hour. Figure
3 presents the smoothness results for these two case studies.
Only a subset of the compressors are shown for these cases.

V. CONCLUSIONS

We have investigated the Dynamic Optimal Gas Flow
(DOGF) problem in which the goal is to minimize com-
pressor costs under dynamic conditions where deliveries
to customers are described by time-dependent mass flow
functions. This study is motivated by the growing reliance
of electric power systems on gas-fired generation in order to
balance intermittent sources of renewable energy. This deeper
integration has increased the variation and volume of flows
through natural gas transmission pipelines, emphasizing the
need to go beyond steady-state optimization in controlling
and optimizing natural gas networks. Maintaining efficiency
and security under such dynamic conditions requires opti-
mization methods that account for transients and can quickly
compute solutions to follow generator re-dispatch.

This paper presents an efficient scheme for the DOGF
that relies on a compact representation of gas flow physics
and a trapezoidal discretization in time and space that allows
sparse representation of constraints. A two-stage approach is



applied to minimize energy costs and maximize smoothness
to correspond to physically correct solutions. The resulting
large-scale nonlinear programs are solved using a modern
interior-point method and the results are validated using an
accurate simulation of the dynamic equations and a recently
proposed state-of-the-art method. The novel optimization
scheme yields solutions that are feasible for the continuous
problem and practical from an operational standpoint in
a computation time that is up to an order of magnitude
faster than existing methods. Scalability of the scheme is
demonstrated using three networks with 24, 40, and 135
pipes with total lengths of 477, 1118, and 6964 km of
pipeline, respectively. Future work will further accelerate
computation by exploiting the underlying time structure
of the optimization problem as suggested in [38], and by
considering alternative discretization schemes and how they
impact accuracy and performance.
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